Synthesis of Pyrano[3,2-*b*]indole Derivatives Based on Intramolecular Hetero-*Diels*-*Alder* of 2-Benzylidene-2,3-dihydro-1*H*-indol-3-ones

by Yann Davion^a), Benoît Joseph^a)¹), Valérie Bénéteau^a), Jean-Michel Léger^b), Christian Jarry^b), and Jean-Yves Mérour*^a)

 ^a) Institut de Chimie Organique et Analytique, UMR-CNRS 6005, Université d'Orléans, BP 6759, F-45067 Orléans Cedex 2 (fax: (33)2-38-41-70-81; e-mail: jean-yves-merour@univ-orleans.fr)
^b) EA 2962, Pharmacochimie, Université Victor Segalen Bordeaux II, F-33076 Bordeaux Cedex

Pyrano[3,2-*b*]indole derivatives 2-6 were synthesized in good yields from 1-acetyl-2-benzylidene-2,3dihydro-1*H*-indol-3-ones 8 and 13-15 by an intramolecular hetero-*Diels*-*Alder* reaction. The structures of compounds 2a, 3a, 4, 5, and 6 were unambiguously established by X-ray analysis. Compounds 4 and 5 were further aromatized to the corresponding derivatives 16 and 17, respectively.

1. Introduction. – The hetero-*Diels* – *Alder* reaction has been developed in the last decade because of its elegant, economical, and stereocontrolled application in the synthesis of polycyclic skeletons of natural products [1]. Thus, *Tietze* and co-workers have performed hetero-Diels-Alder reactions of 1-oxa-1,3-butadiene as a powerful method for the synthesis of the pyran moiety [2]. By a similar approach, Dehaen and co-workers [3] have prepared in a diastereoselective manner polycyclic heterocycles with fused pyrano and thiopyrano rings. Under microwave irradiation conditions, Raghunathan and co-workers [4] have reported the synthesis of pyranoquinolinone by Diels-Alder methodology with a high degree of chemoselectivity. A limited number of benzylidenedihydroindol-2- or -3-ones have been reported to behave as dienophiles in Diels-Alder reactions. To the best of our knowledge, Desimoni and co-workers have described the preparation of pyrano[2,3-b]indole derivatives from benzylidenedihydroindol-2-one in good yields via this approach [5]. Among our research projects, the reactivity of 1-acetyl-2,3-dihydro-1*H*-indol-3-one (1a) was investigated in order to prepare new heterocyclic compounds through cycloaddition reactions [6]. Thus, we have already reported a convenient methodology for the preparation of pyrano[3,2b indole derivatives [7]. Following this preliminary communication, we herein describe the complete synthetic work with the corresponding structural analysis of the new pentacyclic derivatives 2-6.

Results and Discussion. – First, we investigated the synthesis of pyrano[3,2-b]indole derivatives **2** and **3** (*Scheme 1*). Aldol condensation of 1-acetyl-2,3-dihydro-1*H*-indol-3-one (**1a**) or 1-acetyl-2,3-dihydro-5-methoxy-1*H*-indol-3-one (**1b**) and 2-[(3-methylbut-2-enyl)oxy]benzaldehyde (**7a**) [8] or ethyl (*E*)-4-(2-formylphenoxy)but-2-enoate

Present address: Laboratoire de Chimie Organique 1, Université Claude Bernard – Lyon 1, UMR-CNRS 5622, CPE - Bâtiment 308, 43 Boulevard du 11 Novembre 1918, F-69622 Villeurbanne Cedex

(7b) [9], respectively, gave compounds 8a-8c in good yields (except 8c) as (E)/(Z) diastereoisomer mixtures [10]. The intramolecular *Diels-Alder* reaction was first carried out with derivative 8a ((E)/(Z) ratio 17:83). The reaction was performed in a sealed tube in toluene at 140° for 3 days to afford, after a chromatographic separation, the *cis-* and *trans*-pyrano[3,2-*b*]indole derivatives 2a and 3a, respectively, in 62% overall yield.

Scheme 1. Synthesis of Compounds 2 and 3

The cyclization gave predominantly the *cis*-product (*cis/trans* ratio 76:24) [10]. The ratio did not exactly match the (E)/(Z) ratio of the starting heterodiene due to a partial isomerization of the mixture during the cyclization reaction. The *cis*-configuration of **2a** was supported by the coupling constant J(6a,13b) = 4.4 Hz (*trans*-isomer **3a**:

J(6a,13b) = 12.0 Hz) consistent with a *trans*-diaxal relationship and 2D-NOESY experiments (connectivities were observed between H–C(6a) and H–C(13b)). In addition, X-ray crystal-structure analyses of **2a** and **3a** were performed (*Figs. 1* and 2), and the *cis*- and *trans*-configurations, respectively, were unambigously established.

Fig. 1. ORTEP Drawing of the crystal structure of compound 2a with atom numbering (ellipsoids at 50% probability)

Fig. 2. ORTEP Drawing of the crystal structure of compound **3a** with atom numbering (ellipsoids at 50% probability)

All attempts to improve the yield of the intramolecular cyclization and the diastereoselectivity failed. Addition of a *Lewis* acid into the medium accelerates the reaction but decreases the yield (15-23%) by degradation of the starting material. In addition, no ene product was obtained in our different attempts at intramolecular cyclization.

The intramolecular-cyclization conditions (sealed tube, 140° , 3 days, toluene) were applied to the derivatives **8b** ((*E*)/(*Z*) ratio 19:81) and **8c** ((*E*)/(*Z*) ratio 40:60). The first one gave **2b** (*cis* isomer, *J*(6a,13b) = 5.4 Hz) and **3b** (*trans*-isomer, *J*(6a,13b) = 10.7 Hz) in moderate yield (36%) with a *cis/trans* diastereoisomer ratio of 69:31. Similarly from **8c**, compounds **2c** (*cis*-isomer, *J*(6a,13b) = 4.7 and *J*(6a,7) = 11.3 Hz) and **3c** (*trans*-isomer *J*(6a,13b) = 9.8 and *J*(6a,7) = 10.3 Hz) were obtained in 57% yield (*cis/trans* ratio 63:37). For the compounds **2c** and **3c**, the *trans*-configuration, observed in compound **8c** between the H-atoms H_b and H_c, was also conserved *i.e.*, between H–C(6a) and H–C(7)).

On the basis of these successful results, we investigated the intramolecular hetero-Diels-Alder reaction of substituted 1-acetyl-2-benzylidene-2,3-dihydro-1H-indol-3ones (13, 14, and 15 obtained from 1a and tert-butyl N-(2-formylphenyl)-N-(3methylbut-2-enyl)carbamate (11a), 2-(4-methylpent-3-enyl)benzaldehyde (11b) [11], or 2-[(3-methylbut-2-enyl)sulfanyl]benzaldehyde (11c) [12], respectively, in the presence of piperidine in 78-80% yield as a mixture of diastereoisomers (13: (E)/(Z) 49:51; 14: (E)/(Z) 7:93; 15: (E)/(Z) 21:79). It should be noted that starting material 11c was prepared from 2-sulfanylbenzoic acid (9) [13] by a reduction/ alkylation sequence, followed by MnO₂ oxidation (Scheme 2). Alkylation [14][15] with 1-bromo-3-methylbut-2-ene must be performed on the 2-sulfanylbenzyl alcohol rather than 2-sulfanylbenzaldehyde in order to prevent dimerization.

Scheme 2. Preparation of Sulfonyl-Substituted Benzaldehyde 11c

Hetero-*Diels*-Alder reactions were performed on 13-15 in a sealed tube (140°, 24 h) to afford exclusively the *cis*-diastereoisomers 4-6, respectively, in 86, 71, and 57% yield (*Scheme 3*).

The structures were again deduced from the ¹H-NMR coupling constants of the ring H-atoms H-C(6a) and H-C(13b) (4: J(6a,13b) = 7.0 and 5: J(6a,13b) = 6.3 Hz) and 2D-NOESY experiments. X-Ray crystal-structure analyses were also performed for compounds 4–6 (see *Fig. 3* for compound 4) indicating *inter alia* the *cis*-configuration.

In all cases studied, the *cis*-annelated products were predominantly or exclusively obtained from benzylidenedihydroindol-2-ones. As already described by *Tietze et al.* [12], under kinetic control, the *endo*-transition state **A**, leading to the *cis*-adduct, is energetically more favorable than the *exo*-transition state **B**. The presence of a heteroatom (X=O, N-Piv, S) instead of a CH₂ group in the chain adjacent to the aryl

Scheme 3. Synthesis of Compounds 4-6

Fig. 3. ORTEP Drawing of the crystal structure of compound 4 with atom numbering (ellipsoids at 50% probability)

moiety has no product-determining influence on the conformation of the transition state (*Fig. 4*).

Fig. 4. endo- and exo-Transition states A and B, respectively

When compound 4 was treated with *N*-bromosuccinimide (NBS; 1.1 equiv.), followed by reflux in basic medium, a satisfying 75% yield of the corresponding aromatized derivative 16 was obtained. Similarly, the same conditions applied to 5 afforded derivative 17 in 50% yield (*Scheme 4*).

In this study, new intramolecular *Diels*-*Alder* adducts 2-6 have been obtained from judiciously prepared substituted benzylidene-2,3-dihydro-1*H*-indol-3-ones. The method described is useful to synthesize polycyclic derivatives with potential pharmaceutical properties.

Experimental Part

General. All reactions requiring anh. conditions were conducted in flame-dried apparatus. Petroleum ether (b.p. $40-60^{\circ}$) was used as chromatographic eluent. 2-[(3-methylbut-2-enyl)oxy]benzaldehyde (**7a**) [8], ethyl 4-(2-formylphenoxy)but-2-enoate (**7b**) [9], and 2-(4-methylpent-3-enyl)benzaldehyde (**11b**) [11] were prepared in good yields according to literature procedures. TLC: on precoated silica-gel plates (Merck $60F_{254}$); visualization with an UV lamp. Flash chromatography (FC): on a column with flash silica gel 60 Merck (40-63 µm) as the stationary phase. M.p.: Büchi capillary instrument; uncorrected. IR Spectra: Perkin-Elmer FTIR paragon 1000 spectrometer. NMR Spectra: at 300 K in CDCl₃, with Bruker Avance DPX-250 spectrometer; chemical shifts in ppm relative to Me₄Si (TMS). MS: Perkin-Elmer SCIEX API-300; ion-spray methodology.

1. Diels – Alder *Reactions: Typical Procedure*. In a sealed tube, a soln. of **8** (1.0 mmol) or **13–15** (1.0 mmol) in toluene (10 ml) was stirred at 140° for 3 or 4 d for **8** and 24 h for **13–15**. After cooling, toluene was removed *in vacuo*, the crude residue was purified by CC (silica gel; AcOEt/petroleum ether 2:8) to give **2** and **3** except for **4–6** (AcOEt/petroleum ether 1:9). The diastereoisomers **2** and **3** were separated by CC.

2692

1-(6a,7,13,13b-Tetrahydro-7,7-dimethyl-6H-[1]benzopyrano[4',3':4,5]pyrano[3,2-b]indol-13-yl)ethan-1-one(2a and 3a) [7]. Time 3 d; 62% yield (*cis/trans* 76:24). *cis*-Isomer 2a: m.p. 165–166° (AcOEt/hexane). *trans*-Isomer 3a: m.p. 195–197° (AcOEt/hexane).

*1-(6a,7,13,13b-Tetrahydro-10-methoxy-7,7-dimethyl-*6H*-[1]benzopyrano[4',3':4,5]pyrano[3,2-b]indol-13-yl)ethan-1-one* (**2b** and **3b**). Time 4 d; 36% yield (*cis/trans* 69:31).

cis-*Isomer* **2b**: oil. IR (film): 3059, 2926, 1691, 1615, 1489, 1135, 1033, 757. ¹H-NMR (250 MHz, CDCl₃): 7.77 (d, J = 9.1, 1 arom. H); 7.17 (d, J = 7.7, 1 arom. H); 7.09 (t, J = 7.7, 1 arom. H); 7.03 (d, J = 2.6, 1 arom. H); 6.95 (dd, J = 2.6, 9.1, 1 arom. H); 6.83 (td, J = 1.1, 7.7, 1 arom. H); 6.73 (dd, J = 1.1, 7.7, 1 arom. H); 5.03 (d, J = 5.4, H - C(13b)); 4.58 ($dd, J = 5.0, 12.1, 1 \text{ H, CH}_2$); 4.42 ($dd, J = 3.1, 12.1, 1 \text{ H, CH}_2$); 3.89 (s, Me); 2.78 (s, Me); 2.46 – 2.44 (m, H - C(6a)); 1.61 (s, Me); 1.12 (s, Me). ¹³C-NMR (62.90 MHz, CDCl₃): 169.3 (CO); 156.1 (C); 154.0 (C); 138.6 (C); 129.1 (CH); 129.0 (CH); 127.8 (CH); 124.9 (C); 123.0 (C); 120.9 (CH); 117.8 (C); 116.1 (CH); 115.9 (CH); 113.7 (CH); 100.3 (C); 78.7 (C); 66.1 (CH₂); 55.7 (Me), 40.6 (C(13b)); 33.4 (C(6a)); 28.2 (Me); 27.2 (Me); 23.0 (Me). MS: 378 ($[M + 1]^+$). Anal. calc. for C₂₃H₂₃NO₄: C 73.19, H 6.14, N 3.71; found: C 72.81, H 5.98, N 3.91.

trans-*Isomer* **3b**: oil. IR (film): 3059, 2926, 1691, 1615, 1489, 1135, 1033, 757. ¹H-NMR (250 MHz, CDCl₃): 8.08 (d, J = 9.0, 1 arom. H); 7.18–7.16 (m, 2 arom. H); 7.05 (d, J = 2.6, 1 arom. H); 7.00 (dd, J = 2.6, 9.0, 1 arom. H); 6.92 (dd, J = 1.1, 7.7, 1 arom. H); 6.87 (t, J = 7.7, 1 arom. H); 4.44 (dd, J = 6.3, 9.7, 1 H, CH₂); 4.42 (d, J = 10.7, H - C(13b)); 4.18 (dd, J = 9.7, 12.3, 1 H, CH₂); 3.90 (s, Me); 2.61 (s, Me); 2.27–2.21 (m, H - C(6a)); 1.52 (s, Me); 1.39 (s, Me). ¹³C-NMR (62.90 MHz, CDCl₃): 169.5 (CO); 156.3 (C); 153.8 (C); 140.4 (C); 129.7 (C); 128.8 (CH); 128.0 (CH); 124.7 (CH); 124.5 (C); 121.1 (CH); 117.1 (CH); 116.7 (CH); 115.3 (C); 114.2 (CH); 100.1 (C); 77.1 (C); 69.0 (CH₂); 55.8 (Me); 47.5 (C(13b)); 35.5 (C(6a)); 27.3 (Me); 26.4 (Me); 18.4 (Me). MS: 378 ([M + 1]⁺). Anal. calc. for C₂₃H₂₃NO₄: C 73.19, H 6.14, N 3.71; found: C 72.94, H 6.31, N 3.76.

*Ethyl 13-Acetyl-6a,7,13,13b-tetrahydro-6*H-[*1*]*benzopyrano*[*4',3':4,5*]*pyrano*[*3,2-b*]*indole-7-carboxylate* (**2c** and **3c**). Time 24 h; 57% yield (*cis/trans* 60:40).

cis-*Isomer* **2c**: M.p. 197–198° (AcOEt/hexane). IR (KBr): 2973, 2925, 1746, 1635, 1489, 1461, 1373, 1030, 755. ¹H-NMR (250 MHz, CDCl₃): 7.81 (d, J = 8.3, 1 arom. H); 7.59 (d, J = 7.6, 1 arom. H); 7.40–7.25 (m, 2 arom. H); 7.14–7.08 (m, 2 arom. H); 6.86–6.79 (m, 2 arom. H); 5.24 (d, J = 4.7, H–C(13b)); 4.71 (d, J = 11.3, H–C(7)); 4.45–4.41 (m, CH_2); 4.39 (q, J = 7.1, CH₂); 2.88 (s, Me); 2.75–2.68 (m, H–C(6a)); 1.40 (t, J = 7.1, Me). ¹³C-NMR (62.90 MHz, CDCl₃): 169.6 (CO); 169.5 (CO); 152.2 (C); 138.5 (C); 134.0 (C); 130.3 (CH); 128.3 (CH); 125.4 (CH); 123.4 (CH); 123.0 (C); 122.9 (C); 121.3 (CH); 118.9 (C); 118.4 (CH); 117.0 (CH); 115.0 (CH); 74.1 (C(7)); 65.9 (CH₂); 62.0 (CH₂); 34.0 (C(13b)); 33.8 (C(6a)); 27.8 (Me); 14.3 (Me). MS: 392 ($[M + 1]^+$). Anal. calc. for C₂₃H₂₁NO₅: C 70.58, H 5.41, N 3.58; found: C 70.87, H 5.61, N 3.56.

trans-*Isomer* **3c**: M.p. 217–218° (AcOEt/hexane). IR (KBr): 2973, 2925, 1746, 1635, 1489, 1461, 1373, 1030, 755. ¹H-NMR (250 MHz, CDCl₃): 8.13 (d, J = 8.3, 1 arom. H); 7.67 (d, J = 7.8, 1 arom. H); 7.41 (t, J = 7.8, 1 arom. H); 7.31 (t, J = 7.6, 1 arom. H); 7.16 (t, J = 7.6, 1 arom. H); 7.09 (d, J = 7.6, 1 arom. H); 6.93–6.84 (m, 2 arom. H); 4.58 (d, J = 9.8, H–C(13b)); 4.49 (d, J = 10.3, H–C(7)); 4.40–4.35 (m, 2 CH₂); 2.66 (s, Me); 2.55–2.48 (m, H–C(6a)); 1.37 (t, J = 7.1, Me). ¹³C-NMR (62.90 MHz, CDCl₃): 169.9 (CO); 168.2 (CO); 154.3 (C); 141.7 (C); 134.8 (C); 128.5 (CH); 128.2 (C); 126.1 (CH); 124.1 (CH); 123.6 (CH); 122.5 (C); 121.5 (CH); 118.1 (CH); 117.4 (CH); 115.9 (C); 115.5 (CH); 76.6 (C(7)); 68.0 (CH₂); 62.2 (CH₂); 41.9 (C(6a)); 38.2 (C(13b)); 26.8 (Me); 14.3 (Me). MS: 392 ($[M + 1]^+$). Anal. calc. for C₂₃H₂₁NO₅: C 70.58, H 5.41, N 3.58; found: C 70.25, H 5.45, N 3.43.

1-(13-Acetyl-5,6,6a,7,13,13b-hexahydro-7,7-dimethylindolo[2',3':5,6]pyrano[3,4-c]quinolin-5-yl)-2,2-dimethylpropan-1-one (**4**). According to the procedure for the synthesis of **2** and **3**, compound **4** was prepared from **13**. Time 24 h; 86% yield; *cis*-isomer exclusively; m.p. 225–226° (CH₂Cl₂/hexane).

1-(5,6,6a,7,13,13b-Hexahydro-7,7-dimethylbenzo[5,6][2]benzopyrano[4,3-b]indol-13-yl)ethan-1-one (**5**). According to the procedure for the synthesis of **2** and **3**, compound **5** was prepared from **14** in 24 h; yield 71%; *cis*-isomer exclusively. M.p. 173–175° (AcOEt/petroleum ether). IR (KBr): 3027, 2902, 1686, 1623, 1485, 1455, 1126, 753. ¹H-NMR (250 MHz, CDCl₃): 8.13 (d, J = 8.2, 1 arom. H); 7.06 (br. d, J = 7.5, 1 arom. H); 7.39–7.24 (m, 2 arom. H); 7.16–7.00 (m, 4 arom. H); 4.39 (d, J = 7.0, H–C(13b)); 2.75–2.64 (m, CH_2 , H–C(6a)); 2.55 (s, Me); 2.40–2.29 (m, 1 H, CH₂); 1.37 (s, Me); 1.23–1.07 (m, 1 H, CH₂); 0.66 (s, Me). ¹³C-NMR (62.90 MHz, CDCl₃): 169.3 (CO); 139.3 (C); 139.2 (C); 138.7 (C); 134.7 (C); 126.5 (CH); 126.4 (CH); 126.3 (2 CH); 125.2 (CH); 124.0 (C); 123.1 (CH); 117.7 (CH); 115.9 (CH); 115.8 (C); 80.0 (C); 41.4 (C(13b)); 36.6 (C(6a)); 28.4 (CH₂); 28.1 (Me); 26.6 (Me); 25.3 (CH₂); 19.8 (Me). MS: 346 ([M + 1]⁺). Anal. calc. for C₂₃H₂₃NO₂: C 79.97, H 6.71, N 4.05; found: C 79.75, H 6.89, N 3.91.

1-(6a,7,13,13b-tetrahydro-7,7-dimethyl-6H[1]benzothiopyrano[4',3':4,5]pyrano[3,2-b]indol-13-yl)ethan-1one (6). According to the procedure for the synthesis of 2 and 3, compound 6 was prepared from 15 ((E)/(Z) mixture). Time 24 h; 57% yield; *cis*-isomer exclusively. Brown solid. M.p. 212°. IR (KBr): 3054, 2982, 2932, 1704, 1633, 1480, 1459, 1445, 1416, 1370. ¹H-NMR (250 MHz, CDCl₃): 8.19 (d, J = 8.1, 1 arom. H); 7.61 (d, J = 7.1, 1 arom. H); 7.44 (d, J = 7.7, 1 arom. H); 7.37 (t, J = 8.1, 1 arom. H); 7.29 (t, J = 7.7, 1 arom. H); 7.21 – 7.05 (m, 3 arom. H); 4.50 (d, J = 6.3, H–C(13b)); 3.20–3.05 (m, CH₂); 2.41 (s, MeCO); 2.39–2.31 (m, H–C(6a)); 1.39 (s, Me); 0.81 (s, Me). ¹³C-NMR (62.90 MHz, CDCl₃): 169.1 (CO); 140.4 (C); 139.4 (C); 136.5 (C); 134.8 (C); 129.5 (CH); 127.6 (CH); 127.0 (CH); 126.5 (CH); 125.4 (CH); 123.4 (C); 123.1 (CH); 117.5 (CH); 116.0 (CH); 114.5 (C); 79.3 (C); 47.5 (CH); 39.1 (CH); 31.8 (CH₂); 28.3 (Me); 26.2 (Me); 19.9 (Me). MS: 364 ([M + 1]⁺). Anal. calc. for C₂₂H₂₁NO₂S: C 72.70, H 5.82, N 3.85; found: C 73.07, H 5.99, N 3.97.

2. General Procedure for the Aldolization Reaction. A soln. of 1 (1.0 mmol), 7 (1.5 mmol), and piperidine (0.25 ml) in toluene (25 ml) was stirred at 110° for a given time. After cooling and evaporation of toluene, the crude residue was purified by CC (silica gel; AcOEt/petroleum ether 1:9 for **8a** and **8b** and 2:8 for **8c**) to give **8**.

1-Acetyl-2,3-dihydro-2- $(1-\{2-[(3-methylbut-2-enyl)oxy]phenyl]methylidene)-1$ H-indol-3-one (8a). Time 1 h; yield 83% ((Z)/(E) 83:17). Oil.

(Z)-Isomer: IR (film): 3070, 2926, 1713, 1602, 1487, 1486, 1456, 1004, 755. ¹H-NMR (250 MHz, CDCl₃): 8.32 (d, J = 8.4, 1 arom. H); 7.84 (d, J = 7.3, 1 arom. H); 7.63 (d, J = 7.3, 1 arom. H); 7.52 (s, H_a); 7.46 (d, J = 7.3, 1 arom. H); 7.38–7.24 (m, 2 arom. H); 7.01–6.93 (m, 2 arom. H); 5.45 (br. $t, J = 6.5, H_b$); 4.58 ($d, J = 6.2, CH_2$); 1.89 (s, Me); 1.74 (s, Me); 1.70 (s, Me). ¹³C-NMR (62.90 MHz, CDCl₃): 185.9 (CO); 170.4 (CO); 157.6 (C); 150.1 (C); 138.1 (C); 136.2 (CH); 134.9 (C); 131.5 (CH); 131.0 (NC=CHC₆H₄); 124.7 (CH); 124.2 (CH); 123.9 (C); 123.5 (C); 120.9 (CH); 119.4 (Me₂C=C); 118.7 (CH); 117.7 (CH); 112.5 (CH); 65.5 (CH₂); 25.8 (Me), 25.0 (Me), 18.4 (Me). MS: 348 ($[M+1]^+$). Anal. calc. for C₂₂H₂₁NO₃: C 76.06, H 6.09, N 4.03; found: C 75.82, H 5.91, N 3.85.

1-Acetyl-2,3-dihydro-5-methoxy-2-(1-{2-[(3-methylbut-2-enyl)oxy]phenyl}methylidene)-1H-indol-3-one (**8b**). Time 4.5 h; yield 86% ((Z)/(E) 81:19). Oil.

(Z)-Isomer: IR (film): 3078, 2931, 1687, 1629, 1486, 1132, 1027, 753. ¹H-NMR (250 MHz, CDCl₃): 8.25 (d, J = 9.0, 1 arom. H); 7.52 (s, H_a); 7.47–7.17 (m, 5 arom. H); 7.04–6.89 (m, 1 arom. H); 5.45 ($t, J = 6.4, H_b$); 4.58 ($d, J = 6.3, CH_2$); 3.85 (s, Me); 1.87 (s, Me); 1.75 (s, Me); 1.71 (s, Me). ¹³C-NMR (62.90 MHz, CDCl₃): 186.0 (CO); 170.2 (CO); 157.7 (C); 157.1 (C); 144.8 (C); 138.1 (C); 135.5 (C); 131.6 (CH); 131.0 (NC=CHC₆H₄); 124.9 (C); 124.5 (CH); 123.6 (CH); 120.9 (CH); 119.4 (C); 119.2 (CH); 119.0 (Me₂C=C); 112.5 (CH); 105.8 (CH); 65.6 (CH₂); 56.0 (Me), 25.9 (Me); 24.9 (Me); 18.4 (Me). MS: 378 ([M + 1]⁺). Anal. calc. for C₂₃H₂₃NO₄: C 73.19, H 6.14, N 3.71; found: C 72.87, H 6.30, N 3.56.

Ethyl (E)-4- $\{2-[(1-Acetyl-2,3-dihydro-3-oxo-1H-indol-2-ylidene)methyl]phenoxy)\}but-2-enoate (8c). Time 8 h; yield 37% ((Z)/(E) 60:40). Oil.$

(Z)-*Isomer*: IR (film): 3078, 2931, 1704, 1487, 1462, 1031, 756. ¹H-NMR (250 MHz, CDCl₃): 8.26 (d, J = 8.4, 1 arom. H); 7.83 (d, J = 7.5, 1 arom. H); 7.62 (d, J = 7.5, 1 arom. H); 7.51 (s, H_a); 7.47 (d, J = 8.5, 1 arom. H); 7.39 – 7.22 (m, 2 arom. H); 7.08 – 6.98 (m, 2 arom. H); 6.87 – 6.83 (m, H_b); 6.06 (d, J = 15.6, EtOCOCH); 4.75 (m, CH₂); 4.15 (q, J = 7.1, CH₂); 1.88 (s, Me); 1.25 (t, J = 7.1, Me). ¹³C-NMR (62.90 MHz, CDCl₃): 182.8 (CO); 170.2 (CO); 165.9 (CO); 156.4 (C); 150.0 (C); 141.4 (CH); 137.9 (C); 136.4 (CH); 135.1 (C); 131.8 (CH); 131.1 (CH); 129.1 (CH); 124.8 (CH); 124.3 (CH); 122.7 (NC=CHC₆H₄); 122.5 (C); 121.7 (CH); 117.6 (CH); 112.2 (CH=CHCH₂); 67.0 (CH₂), 60.7 (CH₂), 24.9 (Me), 14.3 (Me). MS: 392 ([M + 1]⁺). Anal. calc. for C₂₃H₂₁NO₅: C70.58, H 5.41, N 3.58; found: C 70.77, H 5.57, N 3.45.

N-(2-Formylphenyl)-2,2-dimethyl-N-(3-methylbut-2-enyl)propanamide (**11a**). To a soln. of *N*-(2-formylphenyl)-2,2-dimethylpropanamide (2.6 g, 12.5 mmol) in dry DMF (25 ml) was added portionwise NaH (607 mg, 15.4 mmol, 60% in dispersion) at 0°. Then, 2-methyl-4-bromobut-2-ene (2.8 g, 18.8 mmol) dissolved in DMF (25 ml) was added dropwise at 0°. The final mixture was stirred for 5 h at r.t. The mixture was poured into H₂O (100 ml) and then extracted with AcOEt (2×40 ml). The org. layer was washed with brine, then dried (MgSO₄), and evaporated *in vacuo*. The crude residue was purified by CC (silica gel; petroleum ether/AcOEt 95 :5) to afford **11a** (2.2 g, 65%). Oil. IR (film): 3088, 2994, 2870, 1688, 1638, 1597, 1394, 1356, 1172, 751. ¹H-NMR (250 MHz, CDCl₃): 10.09 (s, CHO); 7.96 (*dd*, J = 1.6, 7.7, 1 arom. H); 7.63 (*dt*, J = 1.6, 7.7, 1 arom. H); 7.48 (t, J = 7.7, 1 arom. H); 7.24 (d, J = 7.7, 1 arom. H); 5.27 (t, J = 7.0, =CH); 4.33 (*dd*, J = 7.1, 13.9, 1 H, CH₂); 4.15 (d, J = 8.1, 13.9, 1 H, CH₂); 1.61 (s, Me); 1.15 (s, Me); 1.03 (s, 3 Me). ¹³C-NMR (62.90 MHz, CDCl₃): 189.3 (CO); 177.2 (CO); 145.2 (C); 138.2 (C); 134.5 (CH); 133.6 (C); 131.1 (CH); 128.5 (CH); 128.4 (CH); 117.9 (CH); 50.8 (CH₂); 4.1.1 (C); 29.2 (3 Me); 25.4 (Me); 17.1 (Me). MS: 274 ($[M + 1]^+$). Anal. calc. for C₁₇H₂₃NO₂: C 74.69, H 8.48, N 5.12; found: C 74.35, H 8.38, N 4.95.

N- $\{2-[(1-Acetyl-2,3-dihydro-3-oxo-1H-indol-2-ylidene)methyl]penyl\}-2,2-dimethyl-N-(3-methylbut-2-enyl)propanamide (13). According to the procedure for the synthesis of 8, 13 was prepared from 1a and 11a. Time 3 h; 78% yield ((Z)/(E) 51:49). Oil. IR (film): 3062, 2967, 1690, 1639, 1480, 1381, 1361, 1276, 757. ¹H-NMR$

(250 MHz, CDCl₃): (*E*)-Isomer: 8.21 (br. *d*, *J* = 8.3, 1 arom. H); 8.10–8.05 (*m*, 1 arom. H); 7.87 (*dd*, *J* = 1.0, 7.5, 1 arom. H); 7.72–7.68 (*m*, 1 arom. H, H_a); 7.43–7.40 (*m*, 2 arom. H); 7.35–7.24 (*m*, 1 arom. H); 7.23–7.19 (*m*, 1 arom. H); 5.36–5.23 (*m*, H_b); 4.66 (*dd*, *J* = 6.1, 14.3, 1 H, CH₂); 3.90–3.68 (*m*, 1 H, CH₂); 2.63 (*s*, Me); 1.66 (*s*, Me); 1.38 (*s*, Me); 1.13 (*s*, 3 Me). ¹H-NMR (250 MHz, CDCl₃): (*Z*)-Isomer: 8.21 (br. *d*, *J* = 8.3, 1 arom. H); 8.07–8.05 (*m*, 1 arom. H); 7.76 (*dd*, *J* = 1.0, 7.5, 1 arom. H); 7.67–7.63 (*m*, 1 arom. H, H_a); 7.39–7.37 (*m*, 2 arom. H); 7.35–7.24 (*m*, 1 arom. H); 7.16–7.13 (*m*, 1 arom. H); 5.66–5.23 (*m*, H_b); 4.39 (*dd*, *J* = 6.1, 14.3, 1 H, CH₂); 3.90–3.68 (*m*, 1 H, CH₂); 3.90–3.68 (*m*, 1 arom. H, H_a); 7.39–7.37 (*m*, 2 arom. H); 7.35–7.24 (*m*, 1 arom. H); 7.16–7.13 (*m*, 1 arom. H); 7.67–7.63 (*m*, 1 arom. H, H_a); 7.39–7.37 (*m*, 2 arom. H); 7.35–7.24 (*m*, 1 arom. H); 7.16–7.13 (*m*, 1 arom. H); 5.66–5.23 (*m*, H_b); 4.39 (*dd*, *J* = 6.1, 14.3, 1 H, CH₂); 3.90–3.68 (*m*, 1 H, CH₂); 2.12 (*s*, Me); 1.56 (*s*, Me); 1.23 (*s*, Me); 1.05 (*s*, 3 Me). ¹³C-NMR (62.90 MHz, CDCl₃): (*E*)/(*Z*)-mixture: 185.5 (CO): 182.6 (CO); 178.0 (CO); 177.8 (CO); 169.9 (CO); 168.9 (CO); 150.1 (C); 148.3 (C); 142.7 (C); 136.4 (C); 136.3 (CH); 135.5 (C); 135.2 (C); 132.9 (C); 132.9 (CH); 130.9 (2 CH); 130.3 (CH); 130.2 (CH); 130.1 (CH); 128.0 (CH); 127.2 (CH); 126.0 (CH); 125.1 (CH); 124.7 (CH); 124.3 (2 CH); 124.0 (2 C); 119.0 (CH); 118.9 (CH); 117.7 (CH); 117.5 (CH); 117.3 (2 CH); 50.5 (CH₂); 41.2 (C); 41.0 (C); 29.2 (3 Me); 26.6 (Me); 25.8 (Me); 25.7 (Me); 25.2 (Me); 17.7 (Me); 17.5 (Me). MS: 431 ([*M*+1]⁺). Anal. calc. for C₂₇H₃₀N₂O₃: C 75.32, H 7.02, N 6.51; found: C 75.15, H 7.20, N 6.50.

*I-Acetyl-2,3-dihydro-2-[[2-(4-methylpent-3-enyl]phenyl]methylidene]-I*H-*indol-3-one* (14). According to the procedure for the synthesis of 8, 14 was prepared from 1a and 11b [11]. Time 9 h; yield 80% ((Z)/(E) 93 :7). Oil.

(Z)-*Isomer:* IR (film): 3061, 2927, 1697, 1459, 1008, 758. ¹H-NMR (250 MHz, CDCl₃): 8.31 (d, J = 8.2, 1 arom. H); 7.83 (d, J = 7.6, 1 arom. H); 7.63 (t, J = 8.2, 1 arom. H); 7.50 (s, H_a); 7.44 (d, J = 7.3, 1 arom. H); 7.1–7.18 (m, 4 arom. H); 5.19 (br. t, J = 6.1, H_b); 2.79 (t, J = 7.4, CH₂); 2.33 (q, J = 7.4, CH₂); 1.80 (s, MeCO); 1.69 (s, Me); 1.59 (s, Me). ¹³C-NMR (62.90 MHz, CDCl₃): 185.5 (CO); 170.1 (CO); 150.1 (C); 142.5 (C); 136.3 (CH); 135.4 (C); 132.9 (C); 132.8 (C); 130.3 (CH); 129.8 (CH); 128.9 (CH); 126.6 (CH); 124.8 (CH); 124.1 (CH); 123.7 (C); 123.0 (CH); 120.4 (CH); 117.7 (CH); 33.8 (CH₂); 29.2 (CH₂); 25.7 (Me); 25.0 (Me); 17.7 (Me). MS: 346 ($[M + 1]^+$). Anal. calc. for C₂₃H₂₃NO₂: C 79.97, H 6.71, N 4.05; found: C 80.18, H 6.67, N 4.19.

*1-Acetyl-2,3-dihydro-2-[2-[(3-methylbut-2-enyl)sulfanyl]benzylidene]-1*H-*indol-3-one* (**15**). According to the procedure for the synthesis of **8**, **15** was prepared from **1a** and **11c** [12][14] in 4 h; yield 78% ((*Z*)/(*E*) 79:21). Yellow oil. IR (film): 3056, 2974, 2930, 1694, 1634, 1459, 1365, 1311, 1277, 1188. ¹H-NMR (250 MHz, CDCl₃): (*E*)-Isomer: 8.23 (*d*, *J* = 8.3, 1 arom. H); 7.84 (*d*, *J* = 7.6, 1 arom. H); 7.77 (*s*, H_a); 7.73 (*d*, *J* = 7.6, 1 arom. H); 7.63 (*t*, *J* = 7.1, 1 arom. H); 7.46 – 7.21 (*m*, 4 arom. H); 5.25 (br. *t*, *J* = 7.8, H_b); 3.50 (*d*, *J* = 7.8, CH₂); 2.68 (*s*, MeCO); 1.66 (*s*, Me); 1.54 (*s*, Me). ¹H-NMR (250 MHz, CDCl₃): (*Z*)-Isomer: 8.30 (*d*, *J* = 8.3, 1 arom. H); 7.65 (*t*, *J* = 7.9, 1 arom. H); 7.61 (*s*, H_a); 7.44 – 7.18 (*m*, 5 arom. H); 5.33 (br. *t*, *J* = 7.6, H_b); 3.63 (*d*, *J* = 7.6, CH₂); 1.80 (*s*, MeCO); 1.74 (*s*, Me); 1.69 (*s*, Me). ¹³C-NMR (62.90 MHz, CDCl₃): (*Z*)-Isomer: 185.4 (CO); 170.2 (CO); 150.0 (C); 139.1 (C); 137.5 (C); 136.3 (CH); 135.8 (C); 134.1 (C); 129.7 (CH); 129.1 (CH); 129.0 (CH); 126.0 (CH); 124.8 (CH); 124.1 (CH); 123.7 (C); 119.9 (CH); 118.2 (CH); 117.7 (CH); 31.8 (CH₂); 25.6 (Me); 24.8 (Me); 178 (Me). MS: 386.5 ([*M* + Na]⁺). Anal. calc. for C₂₂H₂₁NO₂S: C 72.70, H 5.82, N 3.85; found: C 72.42, H 5.67, N 3.74.

1-(7,13-Dihydro-7,7-dimethylindolo[2',3':5,6]pyrano[3,4-c]quinolin-13-yl)ethan-1-one (16). To a soln. of 4 (133 mg, 0.31 mmol) in CCl₄ (10 ml) at reflux was added *N*-bromosuccinimide (NBS; 55 mg, 0.31 mmol). The final mixture was stirred for 45 min at reflux. After cooling, the solvent was removed *in vacuo*, and CH₂Cl₂ was added (10 ml). Then,Et₃N (0.5 ml, 3.6 mmol) was added, and the soln. was stirred for 2 h at reflux. The latter was poured into H₂O (10 ml). The medium was acidified with 37% HCl (1 ml) and extracted twice with CH₂Cl₂ (2 × 10 ml). The org. layer was washed with brine, then dried (MgSO₄), and evaporated *in vacuo*. The crude residue was purified by CC (silica gel; petroleum ether/AcOEt 8 :2) to afford 16 (79 mg, 75%) as an oil [7].

1-(7,13-Dihydro-7,7-dimethylbenzo[5,6][2]*benzopyrano*[4,3-b]*indo*[-13-*y*]*bethan-1-one* (**17**). According to the procedure for the synthesis of **16, 17** was prepared from **5** in 50% yield. Oil. IR (film): 3057, 2929, 1701, 1453, 1277, 1107, 751. ¹H-NMR (250 MHz, CDCl₃): 8.45–8.39 (*m*, 2 arom. H); 7.80 (br. *d*, *J* = 7.8, 1 arom. H); 7.73 (*d*, *J* = 8.5, 1 arom. H); 7.65 (br. *d*, *J* = 7.0, 1 arom. H); 7.56–7.41 (*m*, 4 arom. H); 7.35 (*t*, *J* = 7.5, 1 arom. H); 2.16 (*s*, Me); 2.03 (*s*, Me); 1.66 (*s*, Me). ¹³C-NMR (62.9 MHz, CDCl₃): 172.7 (CO); 144.1 (C); 138.0 (C); 133.6 (C); 133.5 (C); 128.6 (CH); 127.4 (CH); 127.0 (CH); 126.9 (CH, C); 126.2 (CH); 125.1 (CH); 123.9 (CH); 122.5 (C); 122.4 (C); 121.8 (CH); 120.3 (C); 118.0 (CH); 116.3 (CH); 81.9 (C); 27.4 (Me); 27.3 (Me); 24.6 (Me). MS: 342 ([*M*+1]⁺). Anal. calc. for C₂₃H₁₉NO₂: C 80.92, H 5.61, N 4.10; found: C 81.27, H 5.43, N 3.95.

Crystallographic data for the structures **2a**, **3a**, and **4** (*Table*) have been deposited with the *Cambridge Crystallographic Data Centre* as deposition No CCDC-203686, CCDC-203687, and CCDC-203688. Copies of the data can be obtained, free of charge, on application to the CCDC, 12 Union Road, Cambridge CB21EZ (fax: +44(1223)336033; e-mail: ccdc.cam.ac.uk).

The authors gratefully acknowledge the technical assistance of Ms. Amélie Tessier.

Parameters	2a	3a	4	
Empirical formula	C ₂₂ H ₂₁ N ₂ O ₃	C ₂₂ H ₂₁ N ₂ O ₃	C ₂₇ H ₃₀ N ₂ O ₃	
Formula weight [g·mol ⁻¹]	347.40	347.40	450.53	
Temp. [K]	296(2)	296(2)	296(2)	
Crystal size [mm]	0.50 imes 0.37 imes 0.25	$0.37 \times 0.10 \times 0.05$	$0.30 \times 0.15 \times 0.10$	
Wavelength [Å]	1.54178	1.54178	1.54180	
Crystal system	monoclinic	monoclinic	triclinic	
Space group	P21/c	P21/n	ΡĪ	
Goodness-of-fit on F^2	1.049	1.049	1.035	
Unit-cell parameters	a = 8.793(2) Å	a = 10.523(3) Å	a = 11.063(1) Å	
	b = 15.462(4) Å	b = 17.839(2) Å	b = 11.138(2) Å	
	c = 12.743(8) Å	c = 10.586(3) Å	c = 11.222(1) Å	
	$\alpha = 90^{\circ}$	$\alpha = 90^{\circ}$	$\alpha = 103.88(1)^{\circ}$	
	$\beta = 91.39(3)^{\circ}$	$\beta = 116.06(2)^{\circ}$	$\beta = 90.98(1)^{\circ}$	
	$\gamma = 90^{\circ}$	$\gamma = 90^{\circ}$	$\gamma = 119.26(1)^{\circ}$	
Volume [Å ³]	1732.0(12)	1785.2(7)	1156.3(3)	
Z, calc. density	4, 1.332 mg/m ³	4, 1293 mg/m ³	2, 1237 mg/m ³	
Absorption coefficient	0.711 mm^{-1}	0.689 mm^{-1}	0.641 mm^{-1}	
F(000)	736	736	460	
θ Range for data collection	4.50 to 64.92°	4.94 to 54.94°	4.11 to 54.95°	
Index ranges	$-10 \le h \le 10$	$-11 \le h \le 10$	$-11 \le h \le 11$	
-	0 < k < 18	$0 \le k \le 18$	-11 < k < 11	
	$0 \le l \le 14$	$0 \le l \le 11$	$0 \le l \le 11$	
Reflections coll.	2898	2230	2890	
Max. and min. transmission	0.8424 and 0.7177	0.9663 and 0.7845	0.9387 and 0.8310	
Refinement method	full-matrix	full-matrix	full-matrix	
	east-squares on F^2	least-squares on F^2	least-squares on F^2	
Data, restraints, parameters	2898, 0, 248	2230, 3, 246	2890, 0, 302	
Final <i>R</i> indices	$R_1 = 0.0570,$	$R_1 = 0.0535,$	$R_1 = 0.0433,$	
	$wR_2 = 0.1420$	$wR_2 = 0.1085$	$wR_2 = 0.1000$	
R Indices (all data)	$R_1 = 0.0906$,	$R_1 = 0.1046$,	046, $R_1 = 0.0776$,	
	$wR_2 = 0.1691$	$wR_2 = 0.1349$	$wR_2 = 0.1196$	
Extinction coefficient	0.0095(10)	0.0039(4)	0.0108(7)	
Largest diff. peak and hole	$0.235 \text{ and } -0.239 \text{ e} \cdot \text{\AA}^{-3}$	$0.158 \text{ and } -0.179 \text{ e} \cdot \text{\AA}^{-3}$	$0.217 \text{ and } -0.149 \text{ e} \cdot \text{\AA}^{-3}$	

Table 1.	Crystallographic	Data of	Compounds	2a, 3a,	and 4
----------	------------------	---------	-----------	---------	--------------

REFERENCES

- a) L. F. Tietze, J. Bachmann, J. Wichmann, Y. Zhou, T. Rasche, *Liebigs Ann.* 1997, 881; b) D. A. Evans, J. S. Johnson, E. J. Olhava, *J. Am. Chem. Soc.* 2000, *122*, 1635; c) M. Toyota, C. Komori, M. Ihara, *J. Org. Chem.* 2000, *65*, 7110; d) B. Bear, K. J. Shea, *Org. Lett.* 2001, *3*, 723.
- [2] a) L. F. Tietze, M. Bratz, R. Machinek, G. Kiedrowski, J. Org. Chem. 1987, 52, 1638; b) L. F. Tietze, H. Denzer, X. Holdgrün, M. Neumann, Angew. Chem., Int. Ed. 1987, 26, 1295; c) L. F. Tietze, H. Geissler, J. Fennen, T. Brumby, S. Brand, G. Schultz, J. Org. Chem. 1994, 59, 182; d) L. F. Tietze, J. Bachmann, J. Wichmann, O. Burkhardt, Synthesis 1994, 1185; e) M. Buback, J. Abeln, T. Hübsch, C. Ott, L. F. Tietze, Liebigs Ann. 1995, 9; f) L. F. Tietze, G. Kettschau, J. A. Gewert, A. Schuffenhauer, Curr. Org. Chem. 1998, 2, 19; i) L. F. Tietze, C. Ott, H. Geißler, F. Haunert, Eur. J. Org. Chem. 2001, 1625.
- [3] a) E. Ceulemans, M. Voets, S. Emmers, W. Dehaen, Synlett 1997 1155; b) E. Ceulemans, M. Voets, S. Emmers, K. Uytterhoeven, L. Van Meervelt, W. Dehaen, *Tetrahedron* 2002, 58, 531–544.
- [4] a) S. Manikandan, M. Shanmugasundaram, R. Raghunathan, *Tetrahedron* 2002, 58, 997; b) S. Manikandan, M. Shanmugasundaram, R. Raghunathan, *Tetrahedron* 2002, 58, 8957.

- [5] G. Desimoni, G. Faita, P. Righetti, G. Tacconi, Tetrahedron 1996, 52, 12009.
- [6] a) J.-Y. Mérour, A. Mérour, Synthesis 1994, 767; b) J.-Y. Mérour, A. Mamai, B. Malapel, P. Gadonneix, Tetrahedron 1997, 53, 987; c) E. Désarbre, J.-Y. Mérour, Synthesis 1997, 73.
- [7] Y. Davion, B. Joseph, J.-Y. Mérour, Synlett 1998, 10, 1051.
- [8] D. L. Boger, W. L. Corbett, J. Org. Chem. 1993, 58, 2068.
- [9] Y.-D. Gong, S. Najdi, M. M. Olmstead, M. Kurth, J. Org. Chem. 1998, 63, 3081.
- [10] Determined by ¹H-NMR.
- [11] S. E. Denmark, B. S. Kesler, Y.-C. Moon, J. Org. Chem. 1992, 57, 4912.
- [12] L.-F. Tietze, H. Stegelmeier, K. Harms, T. Brumby, Angew. Chem., Int. Ed. 1982, 21, 863.
- [13] H. S. Kasumai, S. G. Mischke, Synthesis 1989, 763-765.
- [14] H. D. Bendorf, C. M. Coletta, E. C. Dixon, M. Marchetti, A. N. Matukonis, J. D. Musselman, T. A. Tiley, *Tetrahedron Lett.* 2002, 43, 7031.
- [15] N. Ono, H. Miyake, T. Saito, A. Kaji, Synthesis 1980, 952.

Received March 7, 2003